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summary 

The photochemical reaction of (n 5-CSH,-)2NbH3 with Mn, (CO),, leads to 
an ionic product, [((~5-CgHg)Z(CO)Nb)2(~-H)]f [Mn(CO)S]-, whose crystal 
structure suggests a localized, asymmetric bonding description, Cp, (CO)NbH * 

WCO)Cpz+, with Nb-Nb = 3.7739(S) 2~. The NMR signal for the bridging 
hydrogen sharpens at lower temperatures. 

We have previously reported upon thermal reactions of Cp2NbHs (Cp = 
q5-CsHs) with a variety of metal carbonyls [l-5]. With Mn,(CO)lo, 
Cp,NbH(CO) was the only product obtained, presumably arising via hydridic 
attack on CO, leading to a bimetallic compound which (in this case) is un- 
stable to the reaction conditions [5]_ Herrmann has reported that stable bi- 
metallic compounds of this type can often be more readily obtained photo- 
chemically: for example, photolysis of Cp,NbH3 with Cr(CO)6 gives 
Cp2(CO)Nb(p-H)Cr(CO)S l31, whereas the thermal reaction again gives only 
Cp,NbH(CO) [4,5]. We anticipated that photolysis of Cp,NbH3 with Mn,(CO)lo 
might give Cp,(CO)Nb(~-CO)Mn(C0)4, the isoelectronic analog of 
C~,(CO)N~(P-CO)C~(CO)~ which we have previously made and structurally 
characterized [3]; however, quite different products are formed instead. 

Near-UV irradiation of a toluene solution of the two reagents at -15°C 
leads to a new compound (by NMR) which is too unstable to isolate: on 
standing in the dark at -20°C the solution darkens, evolves gas bubbles, and 
gradually deposits a red precipitate (I) as plates or as an oil. Addition of 
hexane to the supernatant solution and further cooling gives small crystals of 
a reddish-brown product (II). These have distinctly different properties: I is in- 
soluble in non-polar solvents but dissolves in acetone or CH,Cl, ; exhibits CO 
stretches in the IR (Nujol mull) at 2045w, ZOlOs, 1975m, 1935s, 1900m, 
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1890m, 187O(sh) and 1850m cm-‘; and NMR signals (acetone-d,) at 6 5.56 
and -23.44 ppm. II is readily soluble in benzene, has CO stretehes (Nujol mull) 
at 2075m, 2OOOs, 1970(k), 1935s, 1920(sh) and 1900m cm-’ and NMR 
peaks (benzene-&) at 6 4.60 and -20.89 ppm_ I and II were also obtained 
from the thermal reaction (25°C) of Cp,NbHs with either HMn(CO)S or 
CH,Mn(CO)s [7]. 

The solubility properties of I suggest an ionic compound, and the ap- 
pearance of IR bands characteristic of the Mn(CO)S- ion [S] support this. A 
crystal of I of dimensions 0.6 X 0.3 X 0.1 mm was selected for crystal- 
lographic study. The crystal is orthorhombic, with cell dimensions a = 
13.583(3), b = 15.565(3), c = 12.622(2) _J%: sp_ace group P212121; 2 = 4. 
Diffraction data were collected on a Syntex Pl diffractometer, using MO-K, 
radiation; 3.5” < 28 < 60”; 3514 independent reflections used. The Nb atoms 
were located from the Patterson function, and IMn, C and 0 atoms from a 
series of difference Fourier maps; Cp ring hydrogens were assigned fixed posi- 
tions_ After correcting for absorption, a bridging hydrogen atom was located 
by using only low-angle data [9]_ All non-hydrogen atoms were refined 
anisotropically; the final agreement factors are R = 0.040 and R, = 0.045. 

The structure of I is shown in Fig. 1. Although crystallographic location of 
the metal-bonded, brid,$ng hydrogen is not completely conclusive*, its pre- 
sence is unequivocal from the NMR: not only is a high-field signal observed, 
but a cationic species without an H would be paramagnetic. The cation, 
KCpz(CWNb)&-H)l+, may be considered from either of two points of view: 
(i) as a symmetric dimer, containing two equivalent, 17-electron, (Cp,Nb(CO)) 
fragments, joined by a protonated metal-metal bond; or (ii) as an asymmetric 

Fig. 1. Structure of compound I. 

*Although the H position refined properly. its intensity was not significantly greater than noise levels: 
also. it has a non-bonded distance from one of the Cp carbons that is considerably shorter (2.38 (6) 
ti> than expected. 
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member of the series of compounds Cp, (CO)Nb(p-H)ML,, wherein the 18- 
electron grouping Cp,NbH(CO) acts as a two-electron donor to a 16-electron 
fragment ML,. Previously reported examples of this class have ML, = Fe(C0)4 
[2]; CpMn(C0)2 [6]; Cr(CO)S [S]; CPV(CO)~ [6] and CpNb(CO)S [lo]; 
here ML, would be [Cp,Nb(CO)]f, which has previously been generated as an 
unstable, trappable intermediate [ 111 _ 

Certain details of the structure suggest, though not conclusively, that the 
second description may be more accurate. In all previous structures of this 
type, the atoms Nb, H, CO and &I are all coplanar. In I, the two (Cp2Nb(CO)) 
units are staggered by 71.3(3)” with respect to one another (a similar stagger- 
ing, ca. 90”, was recently found for isoelectronic [(Cp2HW),(p-H)]* [12]); in- 
stead of being symmetrically placed with respect to the two Nb-Nb-CO 
planes, though, the bridging H lies strictly in one plane (that defined by the 
two Nb atoms and the CO on Nb(l), and well out of the other (0.36(Z) A). 
The Nb-H and Nb-C(0) distances also differ (Nb(l)-H = l-90(6); Nb(2)-H = 
l-96(6); Nb(l)-C(0) = 2.056(7); Nb(2)-C(0) = 2.026(6) a), although only 
the latter difference is statistically significant. These points appear consistent 
with the asymmetric model, with Nb(1) acting as the l&electron donor center. 
In either case, the long Nb-Nb distance, 3.7739(8) a, is consistent with the 
implicit formulation of the interaction as a two-electron three-center bond 
[2,13]. 

The asymmetry does not persist in solution, at least by NMR criteria: the 
sharp singlet observed for the Cp protons remains so down to the point where 
viscosity broadening sets in (about -80°C) (This means that rotation about the 
Nb-Nb axis must also be fast, since the staggered conformation make’s the 
two Cp’s on each metal nonequivalent),One might thus argue that the molec- 
uiar asymmetry in the solid state should be ascribed to crystal packing, rather 
than to inherent bonding preferences. (A useful analogy may be made to the 
trihalide ions, X3-, which could similarly be viewed as symmetric or asym- 
metric (i.e., X- acting as a donor to X,), and which can exhibit either type 
of structure depending upon the counterion [14]). Of note is the fact that the 
signal for the bridging hydride sharpens considerably as the temperature is 
lowered, from a half-width of 30-35 Hz at ambient temperature to 10 Hz be- 
low -20°C. This must be due to thermal decoupling [15], where the increased 
viscosity at lower temperatures increases the relaxation rate of the quadru- 
polar g3Nb nuclei and thus effectively removes the broadening caused by 
‘H-g3Nb coupling. 

The Mn(CO)S- anion has structural parameters quite similar to those previ- 
ously reported 1161, although there is slightly more distortion from ideal tri- 
gonal bipyramidal geometry than in the previous structures. For example, the 
C axial-Mn-Cauid angle is 172.4(3)” in I and 179“ in the two prior structures_ 

Compound II has not yet been characterized; although it appears to be a 
non-ionic complex, analytical results are not compatible with the looked-for 
Cp,(C0)Nb(~t-CO)Mn(CO) 4, and the NMR shows the presence of a metal 
hydride. Further work on this species and on the mechanism leading to these 
products is in progress [173. 
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